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Abstract—Autonomous Underwater Vehicles (AUVs) are ex-
tremely limited by their sensor capabilities, leading to unique
and creative methods to be used for underwater localization. One
of which is using new advancements in visual feature detection
and SLAM to get more precise localization when navigating
enclosed or tight-knit areas such as underwater caves or sunken
shipwrecks. This paper analyzes two state-of-the-art visual SLAM
algorithms on an underwater cave dataset taken from an au-
tonomous underwater vehicle traversing the environment. This
environment provides a challenge for visual SLAM systems due
to the attenuation and backscattering of water, along with bland
environments that feature-based methods may struggle with.
The two visual SLAM algorithms used are ORBSLAM 3, an
open-source visual-inertial SLAM system commonly used in in-
air applications, and SVIn2, an acoustic, visual, inertial SLAM
algorithm specifically designed for underwater applications. Our
results show that monocular ORBSLAM has very inconsistent
results over a long trajectory with issues in tracking due to
underwater effects such as attenuation, backscatter, and bland
environments. Along with this, ORBSLAM mono-inertial and
SVIn2 fail when IMU data can not be correctly calibrated
initially. This paper hopes to add valuable new evaluations of
these visual SLAM systems in a unique environment and provide
insight into potential further studies that could be done for better
SLAM for autonomous underwater vehicles and their respective
datasets.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are becoming a
strong tool for exploring underwater areas and conducting
research without the need for human divers or operators.
AUVs provide a unique opportunity to explore unexplored
areas, study marine ecosystems, map underwater geological
features and more [1]. Within marine robotics, one of the
biggest challenges has been the mapping of underwater en-
vironments. Whether it be sunken shipwrecks, underwater
caves, or coral reefs, there is an effort to explore more of
these areas. Autonomous underwater vehicles (AUVs) offer
great opportunities to explore these areas safely and collect
data on many unreachable areas [2]. While AUVs do provide
great potential for exploring these underwater environments,
they are heavily limited by what sensors can sufficiently
work in underwater settings. Common methods such as GPS
and LIDAR fail in underwater settings and more expensive
methods are utilized such as SONAR and Doppler velocity
logs [3] [4]. This provides a great issue for autonomous path
planning and localization through these extreme areas. One
option for SLAM in terrestrial applications is Visual SLAM
which uses camera imaging and feature detection to map

Fig. 1. ORBSLAM Monocular Visual SLAM running on underwater caves
sonar and vision dataset [10]. Camera Trajectory and ORB feature detection
can be seen.

and localize in real time. Visual SLAM poses an inexpensive
process for localization that can be applied to underwater
settings.

Visual localization and mapping algorithms have seen a
great deal of innovation with new developments in feature-
based detection. With these innovations, feature-based algo-
rithms have become a reliable approach for localization meth-
ods. Algorithms such as ORBSLAM [5] have been seen to
give reliable results in many applications. While visual SLAM
has great results in terrestrial applications, the underwater
setting provides a new challenge for visual SLAM systems
[6]. Issues not found in air settings such as light attenuation
and backscattering have drastic effects on camera imaging [1]
[7] [8] [9].

With this said, there could be cases where visual localization
and mapping could provide further benefits to the localization
of AUVs such as small caves and sunken shipwrecks [6]. This
paper displays results from state-of-the-art feature-based visual
localization and mapping algorithms tested on monocular
underwater camera data to showcase their effectiveness at
localizing underwater. These results can give insight into what
next steps need to be taken for underwater imaging and SLAM
to be improved for AUVs.

II. RELATED WORKS

A. Feature Detection

The main driver behind visual localization and mapping
for monocular camera data is feature detection. The key idea
behind feature detection is taking an image and noting key



points within the image. The way these key points are selected
within images depends on the algorithm used and could vary
greatly, but it usually involves differences in hue, saturation,
or more [11]. Using these features in an image, they can
be compared against features in future images and matched
together to determine shifts within the camera. The main state-
of-the-art algorithms within feature detection include ORB
[12], SIFT, and SURF. These algorithms have been tested
extensively on various applications and have seen great results
with various data [13]. The main areas that they fail in are
when it comes to repetitive or bland images without lots
of differences [12]. In these scenarios, it becomes hard for
the algorithms to spot various features within an image or
determine matches in further images.

Recently, there have been some further developments in
feature-based detection with deep learning. While these meth-
ods have been seen as successful, there are external problems
that arise with them [14]. This includes needing to have
extensive data to train networks on. In environments such as
underwater, there is a lack of data with ground truths to train
models on. For the scope of this project, this paper will not
be evaluating or testing any deep learning methods.

B. ORBSLAM 3

One state-of-the-art visual localization and mapping system
is based on ORB feature detection [12] and is known as
ORBSLAM [5]. ORB feature detection is one of the few open-
source feature detection methods and was made as a compe-
tition to other patented algorithms such as SIFT and SURF.
It has been shown to outperform these methods consistently
[12]. ORB feature detection is based on using FAST keypoint
detection to gather initial feature points on a pyramid scale
and then passes those feature points through BRIEF which
encodes them in binary for fast processing [15]. Utilizing
these ORB features, ORBSLAM creates keyframes that are
used to create a sparse map that can be referenced by new
keyframes to localize the camera. ORBSLAM also allows
for loop closure, where when it detects a loop it can fix
a previous trajectory based on the previously created map.
Overall, ORBSLAM is a strong visual SLAM algorithm that
has been shown to outperform many other classical feature-
based SLAM approaches.

New developments have been made in ORBSLAM leading
to the latest version being ORBSLAM 3 [16] which introduces
a new mapping Atlas to hold multiple maps when tracking
is lost, as well as visual-inertial SLAM that utilizes inertial
measurement unit data for better tracking accuracy. This paper
leverages ORBSLAM 3 as an open-source tool to evaluate its
performance in an underwater setting. This paper will push
ORBSLAM 3 to its limits with the challenging environment
that comes with underwater camera data where feature detec-
tion may be minimal. This paper will test ORBSLAM 3 with
its monocular and mono-inertial settings.

C. SVIn2

One newly developed SLAM system for underwater appli-
cations is SVIn2 [6] which fuses acoustic, visual, and inertial
data for SLAM. SVIn2 uses the OKVIS [17] package for
visual-inertial SLAM and fuses it with SONAR data for better
tracking within the low-feature environment in underwater
settings. Along with using this SONAR data, SVIn2 uses
image enhancement through Contrast Limited Adaptive His-
togram Equalization (CLAHE) for better feature detection [6].
This is a preprocessing method that creates several histograms
for each section of an image and redistributes contrast using
these histograms while capping them to keep the entire image
contrast consistent. This is done to aid the feature detection of
OKVIS which is a keyframe-based SLAM algorithm similar
to ORBSLAM. For the scope of this project, this paper will
only focus on testing the visual-inertial aspect of SVIn2.

D. Underwater Imaging

The two biggest issues that underwater imaging faces are
backscattering and attenuation. Backscattering is when light is
reflected off particles floating in a medium and directed back at
the camera. For imaging, this results in bright hazes appearing
in the image at random moments throughout a video. With the
amount of particles commonly floating in water in underwater
environments, backscattering largely affects the clarity of
video imaging taken from an AUV. Backscattering can cause
key parts of an image to become blurry or covered due to
this intense light being reflected into the camera [7] [8] [9].
The other issue imaging faces is attenuation where light is
absorbed or diffracted by the medium’s particles. Water has
high attenuation and can absorb a large amount of light.
This causes high-frequency light such as red colors to be
absorbed leaving mostly low-frequency light such as blue or
greenish colors to travel further [7] [8] [9]. This is why images
underwater have a blueish hue. The main issue caused by this
for imaging is that the distance cameras can see can vary
extremely depending on the quality of the water. This paper
will look at how these imaging limitations affect the quality
of visual SLAM systems.

III. TECHNICAL APPORACH

A. Underwater Caves Sonar Dataset

For this paper, the main dataset being used to evaluate
visual SLAM is the underwater cave sonar dataset from
Girona Underwater Vision and Robotics lab [10]. This dataset
comprises data gathered by an autonomous underwater vehicle
(AUV) within the intricate and unstructured confines of an
underwater cave complex. The AUV used in this dataset is the
Sparus AUV. It has six main sensors attached, including two
inertial measurement units, two sonar sensors, one Doppler
velocity log, and a downward-facing analog camera. For our
purposes, we will be focusing on using the downward-facing
analog camera for visual data for feature detection and SLAM.
The camera used has a resolution of 384x288 pixels. An
example of the image quality is seen in Figure 2.



Fig. 2. Camera view from Sparus AUV, adapted from [10]

This dataset also provides a ground truth in the form
of traffic cones placed throughout the AUV’s path. For our
purposes. we can use the placement of these cones and their
absolute distances to compare the predicted trajectory length
against the length between each cone pairing. The limiting
factor behind this ground truth is that the measurements are
not precise, only being taken by a tape measurer throughout
the cave by divers. Along with this, only the absolute distances
are provided and not the direction. This does give a somewhat
general estimate of the distance, but it can be used to get a
gauge of how accurate the predicted distance is. The path the
AUV took and the placement of the cones can be seen in
Figure 3.

For utilizing this dataset, ROSBAG files are provided that
contain information for the camera and the sensor data.
One ROSBAG contains pure camera data of the images

Fig. 3. Path of Sparus AUV through underwater cave along with cone
placement and labeling, adapted from [10]

with a framerate of 5 fps. It also contains information for
the calibration of the camera. The other ROSBAG contains
information on the IMU, Sonar, and DVL data along with
each transformation from sensor frame to body frame. Along
with this, estimated odometry based on all these sensors is
provided from evaluation from the lab. This information on
the trajectory can be used as a sudo ground truth for our
localization to be compared against.

There are two main reasons this dataset was chosen. The
first reason is that this dataset is a real-world cave dataset
taken from an AUV. There are very few datasets that have
a monocular camera navigating through an underwater cave
where the AUV is close to the floor or walls for a clean
image feed to be taken for evaluation. This is a great test
example of how a real AUV could leverage visual SLAM in
these scenarios where it is forced to be close to the cave
walls for navigation. Another reason is that this is one of
the few datasets that has somewhat of a ground truth for
evaluation. Many underwater datasets lack ground truth which
makes it extremely hard to work with them and evaluate them
quantitatively. The cones along with the implemented sensor
fusion odometry provide a great base for this paper to evaluate
visual trajectories.

B. ORBSLAM 3 Monocular Approach

For the implementation of Monocular ORBSLAM on the
dataset, parameters had to be tuned to allow the algorithm
to run effectively for the environment. For calibration, the
number of features was set to 2000, the pyramid scale set
to 1.2, and the number of levels to seven. These values are
a bit higher than normal due to the low contrast of the
underwater environment presented by the dataset. Another
key implementation was using the Contrast limited adaptive
histogram equalization (CLAHE) to increase the range of
contrast in the video feed. The difference in feature detection
can be seen in figure 4

Fig. 4. CLAHE effects on image quality and feature detection. Left is CLAHE
corrected image and right is initial grayscale image.

C. ORBSLAM 3 Mono-Inertial Approach

For ORBSLAM 3 mono-inertial SLAM, the same ORB
parameters were used as in the ORBSLAM Monocular SLAM
and CLAHE was also applied before feature detection. For the
inertial aspect, the rotation and translation matrix was applied
to take the camera pose and adjust it to the IMU (body) frame.



Along with this, the IMU parameters such as acceleration
walk, gyroscopic walk, noise, and frequency.

D. SVIn2 Approach

For SVIn2, the initial OKVIS parameters were used since
they have already been adjusted to account for underwater
datasets through SVIn2. Along with this, the images are
already processed with CLAHE for image correction. For the
IMU data, the same process for IMU frame was done as in
the ORBSLAM 3 mono-inertial system.

IV. RESULTS

A. Evaluation

To evaluate the trajectory against the ground truth, the
absolute pose error (APE) and the relative pose error (RPE) are
used to compare the ORBSLAM trajectory against the sudo
ground truth provided in the caves dataset [12].

The absolute pose error is the error between the predicted
trajectory and the ground truth trajectory at a certain time. The
average APE is defined as:

APEµ =
1

n

n∑
i=1

||trans(Ei)||2 (1)

Ei is the absolute trajectory error that comes from the Horn
method which finds the rigid body transformation to line up
the trajectories and have them overlap.

The relative pose error is similar to the absolute pose
error except instead of taking the pose error over the entire
trajectory, the relative pose error only takes the error for small
snippets of the predicted trajectory. This allows for analysis
over small areas to evaluate trajectories incase there is a drift
in the predicted trajectory. The average RPE is defined as:

RPEµ =
1

m

m∑
i=1

||trans(Fi)||2 (2)

Fi is the relative trajectory error that is similar to Ei except
that Fi is only calculated over a small step of ∆ to avoid one
bit of error changing the absolute error of the entire trajectory.

For evaluation, the mean APE and RPE will be calculated
for trajectories between pairs of cones within the dataset.
By running ORBSLAM only between cone pairings, it will
not run into issues of relocalization when tracking is lost in
cases where attenuation and backscattering is too extreme for
ORBSLAM to handle.

Evo is used to calculate and match trajectories from the
predicted trajectory and the ground truth as well as calculate
the APE and RPE. It is also used to graph the trajectories in
a 3D scene. Example graphs can be seen in figures 5, 6, and
7.

B. ORBSLAM 3 Monocular Only

The results from ORBSLAM 3 Monocular can be seen in
Table I. Some key notes before getting into the evaluation
are the missing data points for the ground truth distance. The
biggest issue was that the underwater dataset does not include
the distance from cone 4 to cone 5 and vice versa. There was
no explanation for why this distance was missing, so we have
no ground truth distance for pairings with cone 5. Another
thing is the distance where it loops back to a cone such as 6
- 6. This looping makes it so no ground truth can be gathered
during that pathing sequence. For this reason, we also included
the sudo ground truth distance calculated from the provided
odometry in the dataset.

With that, looking at the results from ORBSLAM, one main
takeaway is the inconsistency with tracking. Only four out of
the eleven paths could localize and map for their respective
distances. Overall, ORBSLAM could only hold tracking for
an average of 21 meters. While this seems good, there are
two outliers which are the cone paths of 4-5 and 6-1 where
the predicted path distance is much longer than reality. These
outliers are due to the APE being high (¿ 2) for those paths
meaning localization for those paths was bad. Removing those
two points from the data gives an average of 11.50 meters.
This is a very short tracking distance for ORBSLAM, but
with inconsistencies in the environment with bland scenes, it
is hard for feature detection to stay effective.

Looking at the APE and RPE, it is interesting to see that
the values are low for most of the datasets. There is an
overall average of 1.88 m for APE and an average of 0.393
m for RPE. These low errors show that when ORBSLAM can
keep consistent tracking underwater, the error is very minimal.
While the APE is a bit larger, this is because one spike in the

Fig. 5. Overlaid trajectories for cone pairings 1-2 compared against sudo
ground truth.



TABLE I
ORBSLAM RESULTS FROM UNDERWATER CAVES DATASET. INCLUDES CONE PAIRINGS, CONE DISTANCE, SUDO GROUND TRUTH DISTANCE, % OF

TRAJECTORY COMPLETED, MEAN APE, MEAN RPE, AND PREDICTED TRAJECTORY DISTANCE.

ORBSLAM 3 Testing
Cone Pairings Cone Dist (m) Sudo GT Dist (m) % APE RPE Dist (m)

1 - 2 19 19.43 100 0.736 0.608 15.761
2 - 3 32 32.24 30 0.732 0.323 8.52
3 - 4 16 13.38 100 0.229 0.366 11.98
4 - 5 - 39.08 47.5 1.243 0.340 9.98
5 - 5 - 181.21 1.5 - - -
5 - 4 - 35.12 100 11.71 0.596 88.7
4 - 3 16 18.52 35 0.096 0.219 4.04
3 - 2 32 32.05 39.1 1.001 0.417 11.81
2 - 6 11 15.14 100 0.233 0.337 13.425
6 - 6 - 104.03 14.9 0.231 0.341 16.526
6 - 1 30 32.49 68 2.653 0.389 33.60

Fig. 6. APE graph for cone pairings 1-2.

error anywhere along the path will cause the APE to be much
higher for the rest of the path than compared to the RPE.

Lastly, looking at the predicted distances they are mostly
inconsistent. This comes from many of the paths not being
able to finish meaning that the distance was cut short. It is also
interesting to see that the APE and predicted distance seem
to have a positive correlation, but with this limited amount of
data, it can not be directly proven.

C. ORBSLAM3 Mono-inertial

When testing ORBSLAM3 Mono-inertial, many issues
came up with the fusion of IMU and visual data. The main
issue was with initializing the IMU. When ORBSLAM starts
up, it needs time to initialize the IMU data to account for IMU
drift. For real situations, this is not an issue since the camera
can be held steady while ORBSLAM initializes the IMU data.
When testing on the underwater dataset, the AUV is already
moving at the start of the rosbag provided, not giving enough
time for ORBSLAM to initialize the IMU.

Fig. 7. RPE graph for cone pairings 1-2.

Along with this, the dataset did not provide any calibration
information from camera to IMU reference frame. They do
provide the axis’ and translation specs, however, there may be
slight inconsistencies with this and the real-world rotations and
distances. The dataset also does not provide any information
on the specs of the IMU used, resulting in having to use the
data from the datasheet of the IMU. These issues could have
been avoided if IMU to vision calibration was provided, such
as Kalibr [18].

D. SVIn2

When testing with SVIn2, the same issues that ORBSLAM
Mono-inertial suffered from were seen. These two main issues
of initialization and lack of calibration made inertial SLAM
data unusable for this dataset, so evaluation could not be done
with these methods. In figure 8, you can see the exploding
trajectory resulting from SVIn2 running on the dataset.



Fig. 8. Trajectory from SVIn2 running on underwater caves dataset.

E. Limitations

The main areas ORBSLAM failed were areas where atten-
uation made it extremely hard to get a clear image of the
ground, and when there was little objects in the scene to
provide features. The lack of features and similarities of the
scene caused ORBSLAM to struggle to localize and get an
accurate map leading to drifts or loss of tracking. Once loss
of tracking occurred ORBSLAM struggled to relocalize with
the lack of uniqueness in the underwater caves. Some example
photos of images ORBSLAM struggled with can be seen in
9.

Fig. 9. Two images showcasing where ORBSLAM failed. Both images lack
contrast which makes ORB feature detection extremely hard.

Another big issue with underwater caves is the lack of
looping in the dataset and the size of the dataset. While some
cone pairings were close together, some were extremely far
away. The issue with this is that a loss of tracking anywhere
along the path would ruin the tracking for the entire trajectory.
These large gaps gave more time for a loss of tracking, making
it difficult to evaluate these trajectories along the underwater
cave.

V. CONCLUSIONS & FURTHER WORK

Throughout this paper, benchmarking of ORBSLAM 3 and
SVIn2 was performed on a real-world AUV dataset against
the sudo ground truth provided by the authors of the dataset.
From the results shown, it is clear that current applications of
visual SLAM struggle when faced with an underwater dataset.

This is due to the lack of features provided in the underwater
environment along with the attenuation and backscattering.
Along with this, inconsistencies with calibration from the
dataset can have drastic impacts on the result of visual-inertial
SLAM methods.

There are several further directions for future work to
expand upon this paper. One of which would be to display
more visual SLAM methods for seeing the differences in
feature detection. Another would be to use other datasets.
This dataset had many limitations such as the lack of ground
truth, low resolution camera, and issues with the calibration
of the inertial sensors. Lastly, it would be useful to test stereo
cameras since they provide more information than a single
monocular camera.

Even though visual SLAM struggles in the underwater
environment, there are key takeaways that could provide better
tracking to aid visual SLAM in an underwater environment.
The first takeaway is image processing for feature detection.
The underwater effects drastically decrease the quality of
camera imaging, so new developments need to be made
in underwater imaging before feature detection becomes a
reliable system for visual SLAM. One concept that could
be used is deep learning, which is seen in systems such as
UGAN [19] and WaterGAN [20]. These new methods could
support feature detection but do fail in temporal conditions.
New developments need to be made to have consistent image
enhancement throughout a video stream to keep feature de-
tection effective. Along with this, some work could be done
with deep learning feature-detection, however, there are many
issues with training these networks with the lack of data on
the underwater environment.
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