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Abstract—Autonomous Underwater Vehicles (AUVs) are be-

coming widely used to explore and map underwater areas for
further research, however, many AUVs cannot create dense
reconstructions of these environments only creating sparse re-
constructions of their surrounding environments. With that, this
paper evaluates different NeRF algorithms’ ability to recreate
underwater scenes from monocular camera data in a dense
rendering. The two NeRF algorithms evaluated in this paper
are SeaThruNeRF, a NeRF algorithm specifically designed for
underwater scenes, and NeRF-SLAM, a NeRF algorithm that
utilizes deep learning visual SLAM to help estimate poses for
NeRF reconstruction. Along with these two algorithms, this paper
introduces the use of UGAN, a generative adversarial network
used for underwater image reconstruction, as a preprocessing
method for NeRF-SLAM to test if that aids the performance of
NeRF compared to the model used by SeaThruNeRF. From the
results, it is clear that further work needs to be done to improve
NeRF reconstruction for large underwater scenes, and that
current GAN methods require temporal image reconstruction
to benefit NeRF rendering.

I. INTRODUCTION

Within marine robotics, one of the biggest challenges has
been the mapping of underwater environments. Whether it be
sunken shipwrecks, underwater caves, or coral reefs, there is
an effort to explore more of these areas. Autonomous underwa-
ter vehicles (AUVs) offer great opportunities to explore these
areas safely and collect data on many unreachable areas [1].

NeRF [2], which stands for Neural Radiance Fields, is an
innovative new mapping technique that involves mapping the
volumetric density and color of a scene at any given 3D point
using neural networks. This is different from usual techniques
which usually use geometric point clouds or meshes for visual
maps. With NeRF, instead of having discrete point clouds the
volumetric map from the neural networks is continuous leading
to a smoother visual output [2]. This has led to better results
for visually analyzing and creating 3D maps. Along with this,
NeRF allows for 3D maps to be viewed from angles that were
not captured in the original dataset. Overall, NeRF technology
has shown strong results for digitally reconstructing objects
with enough training images for the neural network.

For underwater mapping, new developments have been
made to apply NeRF to underwater imaging to produce more
detailed maps using AUVs [3]. While many innovations are
being made, there are many inherent issues caused by under-
water environments. These include attenuation and backscat-

Fig. 1: Flowchart of the design process. We pass an underwater
image through SeaThruNeRF for one result and compare that
against our design, being UGAN along with NeRF-SLAM.

tering from light traveling through water, simultaneous local-
ization and mapping (SLAM) limitations, dynamic objects,
etc. Even with these limitations, there is some evidence
showcasing NeRF’s ability to proficiently handle environments
with inconsistent lighting and sparse environments [4]. With
this said, underwater NeRF is still a relatively new concept
that has little research behind it, and we hope to fill in
that gap with our project. Our project tests state-of-the-art
NeRF algorithms and evaluates their accuracy at mapping
an underwater scene utilizing monocular camera information
in an underwater dataset. We also propose utilizing a GAN
image correction system to help aid underwater NeRF scene
reconstruction.

II. RELATED WORKS

A. NeRF

The primary focus of our research is two cutting-edge NeRF
algorithms: NeRF-SLAM [5] and SeaThru NeRF [3]. These
algorithms exhibit distinct strengths for underwater NeRF
applications. NeRF-SLAM enhances NeRF rendering accuracy
through pose estimates and depth maps, incorporating un-
certainty from dense monocular SLAM. Conversely, SeaThru
NeRF introduces a novel rendering model to mitigate medium
effects such as attenuation and backscattering in underwater
environments. An example is shown in Fig 2. Our research
aims to test both algorithms in large-scale underwater datasets
to understand their advantages and limitations.



Fig. 2: MP360 results (left) compared with SeaThru-NeRF
results (right), adapted from [3]

B. Dataset

1) Underwater Caves Sonar Dataset [6]: This dataset
comprises data gathered by an autonomous underwater vehicle
(AUV) within the intricate and unstructured confines of an
underwater cave complex. The AUV used in this dataset is the
Sparus AUV. It has six main sensors attached, including two
inertial measurement units, two sonar sensors, one Doppler
velocity log, and a downward-facing analog camera. For our
purposes, we will be focusing on using the downward-facing
analog camera for visuals to train and test our NeRF system.
The camera used has a resolution of 384x288 pixels. While this
is not the best image quality, it is sufficient for our project’s
purpose. An example of the image quality is seen in Figure 3.

This dataset also provides a ground truth in the form of traf-
fic cones placed throughout the AUV’s path. For our purposes.
we can use the placement of these cones and their distances to
evaluate how accurately the NeRF-SLAM algorithm correctly
determined its position in the world frame.

Fig. 3: Camera view from Sparus AUV, adapted from [6]

Fig. 4: Monocular image of underwater bus dataset, adapted
from [7]

For this dataset, rosbag files contain both information for the
camera and the sensor data. One rosbag contains pure camera
data of the images with a framerate of 5 fps. It also contains
information for the calibration of the camera. The other rosbag
contains information on the IMU, Sonar, and DVL data along
with each transformation from sensor frame to body frame.
This information could be useful if we can expand upon NeRF-
SLAM to utilize more sensor data in its SLAM algorithm.

2) Underwater Bus Dataset [7]: Another real-world dataset
used in this paper is a monocular video taken by a diver of a
bus that has sunk underwater. This dataset is on a smaller scale
than the underwater caves, being a video that loops around
the bus slowly. Since this dataset is smaller and loops, it will
be easier for the NeRF algorithms to render since there will
be more frames of specific camera angles for NeRF to be
trained on. While this dataset does provide this advantage,
there is a lack of ground truth to quantitatively evaluate NeRF
algorithms against. A photo of the attenuation can be seen in
Figure 4.

3) Underwater Cemetery Dataset [7]: Similar to the un-
derwater bus dataset, the underwater cemetery dataset is a
small-scale scene of an underwater environment. This dataset
is taken from the Aqua 2 AUV that navigates over a fake
cemetery underwater. This dataset has a different attenuation
than the underwater bus, so it can provide an edge case for
how green the hue of the video is. It also lacks ground truth
similar to the underwater bus dataset. An image of the dataset
can be seen in Figure 5.

4) Cube-Diorama Dataset [8]: This is a synthetic dataset
rendered in Blender specifically for NeRF testing and features
various indoor scenes. The rendered scene is shown in Figure
6. This dataset can be used as a baseline for testing the NeRF
algorithms, as it is an extremely small scene of a room and
should lead to good results. We can also use data from the
simulation such as depth maps to further evaluate the results
from NeRF.
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Fig. 5: Monocular image of underwater cemetery dataset,
adapted from [7]

III. TECHNICAL APPORACH

In this section, we will introduce two methods for underwa-
ter scene reconstruction. The first method is to use COLMAP
for tracking and SeaThru NeRF [9] for learning the medium
parameters and removing the medium effects in the underwater
environment. The second method is to preprocess the images
with Underwater GAN [10] and then use NeRF-SLAM for
tracking and reconstruction.

Furthermore, NeRF-SLAM may face potential challenges
due to its design not specifically tailored to underwater
environments. To address such challenges, we propose to
modify the Cube-Diorama dataset to mimic underwater con-
ditions. This modification involves adding attenuation and
backscattering effects to simulate underwater scenes. By eval-
uating NeRF-SLAM’s performance on this adjusted dataset,
we aim to understand how underwater scenarios impact the
system’s rendering accuracy and overall effectiveness. This

Fig. 6: Cube-Diorama rendered, adapted from [8]

Fig. 7: Deep-learning Architecture of UGAN [10]

experimental approach will not only help us to identify any
shortcomings of NeRF-SLAM in underwater environments but
also explore the possibility of integrating the rendering models
from SeaThru NeRF with NeRF-SLAM.

A. Underwater Image Enhancement

With the issues discussed previously about attenuation and
backscattering, underwater imaging is likely to have a big
detriment on NeRF due to the coloring distortion and lack
of contrast within images. Not only would it hurt NeRF, but
it would also provide issues with accurate depth mapping
with DROID-SLAM due to discolorization. With this, this
paper wanted to look at another potential way to aid NeRF-
SLAM by using image reconstruction during preprocessing to
help DROID-SLAM and NeRF correctly work in underwater
settings. The method this paper looks at is using a generative
adversarial network (GAN) network for underwater image
restoration, specifically, Underwater GAN (UGAN) [10].

UGAN works by training a deep-learning generator and a
discriminator with clear underwater images. The architecture
can be seen in Figure 7. UGAN works by taking a clear under-
water image and using CycleGAN to create a false underwater
image. The generator then takes the fake underwater image
and creates an image restored version of the underwater image.
The discriminator takes the restored image and the clear water
image and tries to determine which is the generated image and
which is the true image. Based on whether the discriminator
gets it right or not, the loss updates either the generator or the
discriminator. After training, only the generator output is used
for inference. UGAN has been shown to provide great imaging
results compared to physics-based restoration methods and
other GAN methods. Using these corrected images, we can
pass them into NeRF-SLAM for SLAM and rendering use.

B. NeRF-SLAM

The core concept of NeRF-SlAM [5] involves supervis-
ing a neural radiance field with information generated from
the dense monocular SLAM. NeRF-SlAM uses DROID-
SLAM [11] for tracking, which is capable of generating dense
depth maps and determining camera poses while also offering
estimates of uncertainty for both dense depth maps and poses.
Utilizing these data allows us to train a radiance field using
a depth loss that considers the marginal covariances of the
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depth maps. Specifically, the mapping loss is defined as the
weighted sum of color loss Lrgb and depth loss LD:

LM (T,Θ) = Lrgb (T,Θ) + λDLD(T,Θ)

Lrgb (T,Θ) = ∥I − I∗(T,Θ)∥2

LD(T,Θ) = ∥D −D∗(T,Θ)∥2ΣD

where T is camera poses, Θ is neural network parameters,
D,ΣD are dense depth and uncertainty estimated by DROID-
SLAM, and D∗ is the rendered depth. Similarly, I is the
ground truth image, and I∗ is the rendered color image.

Compared to the conventional training equation for NeRF,
this approach employs a weighted norm to compute the depth
loss, denoted as LD. Intuitively, a high covariance in ΣD

signals significant uncertainty in the depth information of
a particular region. Thus, this area contributes less to the
overall mapping loss. Conversely, a low covariance suggests
that the depth information is reliable and precise, so this
area has a greater influence on the loss calculation. This
differential contribution to the loss function enables more
precise supervision of NeRF, enhancing the reconstruction
quality of areas with lower depth uncertainty.

Real-time performance can be achieved by employing real-
time DROID SLAM and radiance field training and executing
them concurrently.

C. SeaThru-NeRF

The idea behind SeaThru-NeRF is to extend the NeRF
rendering process by considering the effects of light-scattering
media such as water or fog [3]. Traditionally, NeRFs do not
account for these effects, which can cause many undesirable
artifacts and distortions such as floating blobs, . SeaThru-
NeRF considers both solid objects and the medium in the
scene. Given the camera pose (x, y, z) and the viewing
direction (θ, ϕ) for each image, a standard NeRF algorithm
will learn the object density σobj

i ∈ R3 and the object color
cobji ∈ R3. SeaThru-NeRF additionally learns the backscat-
tering density σbs ∈ R3, the attenuation density σattn ∈ R3,
and the medium color cmed ∈ R3 in addition to the other
parameters learned by traditional NeRFs. The final pixel color
is calculated in two parts as follows:

Ĉ =

N∑
i=1

Ĉobj
i (r) +

N∑
i=1

Ĉmed
i (r)

The two color contributions from the object and the medium
are calculated as follows:

Ĉobj
i (r) = T obj

i · exp
(
−σattnti

)
·
(
1− exp

(
−σobj

i δi

))
· cmed

i

Ĉmed
i (r) = T obj

i · exp
(
−σbsti

)
·
(
1− exp

(
−σbsδi

))
· cmed

where T obj
i = exp

−
i−1∑
j=0

σobj
j δj



Fig. 8: Cube-Diorama rendered in an underwater setting

These additional parameters allow SeaThruNeRF to calcu-
late the contributions of both the medium and the object on the
final pixel color. The distinction between the medium effects
and the physical objects in the scene allows rendering of the
scene in multiple ways. The scene can be rendered with all
lighting effects (RGB), clear as if with no medium (J), the
direct attenuated light signal, only the backscattering signals,
a depth map, and more. This allows the medium to be removed
to render the objects as if they were in clear air, which can be
very helpful for analyzing the scene.

D. Underwater Synthetic Dataset

We used available functions in Blender to create an under-
water version of the Cube-Diorama Dataset as seen in Figure 8.
This underwater rendering was done using a volumetric shader
to create the blue hue along with a volumetric absorption to
create the attention effect of light as distance increases. We
also implemented floating particles into the scene to give the
render dynamic objects to test how well NeRF handles these.
Overall, these shaders do qualitatively create an underwater
setting, and this should provide a good simulation test case for
evaluating the different NeRF algorithms. An example image
of the underwater simulated environment can be seen in Figure
8.

IV. RESULTS

We conduct a comprehensive evaluation of Underwa-
ter GAN, NeRF-SLAM, and SeaThru NeRF across various
datasets. These results are vital for assessing the potential
limitations and scalability of these algorithms in large-scale
underwater environments.

A. Underwater GAN

For this paper, we trained UGAN for 300 epochs on an
NVIDIA RTX 4090 and the training data included 6128
clearwater images and their respective generated underwater
images. Running the four datasets through UGAN gives the
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Fig. 9: UGAN results from each dataset.

results seen in Figure 9. Overall, UGAN does a great job
at correcting the image color and contrast, however, has
some notable issues with the output. One key issue is the
resolution of the output is only 512x512 pixels, while the
input images from each dataset vary. This means the images
are resized to a lower resolution causing pixelation in the
output images. Another key issue is that UGAN does not
consider temporal information, meaning that color correction
for each image within a video could be slightly different
than the previous image in the sequence. This causes some
slight lighting and color changes throughout the output image
sequence. Even with these issues, overall the videos are much
clearer. These image sequences will be passed into NeRF-
SLAM and evaluated against the NeRF-SLAM without UGAN
image correction.

B. NeRF-SLAM

This section delves into the evaluation of NeRF-SLAM’s
reconstruction capabilities across various datasets. The results
are shown in columns d and e of Fig. 10.

We tested NeRF-SLAM using an RTX 3080TI and found
that its tracking module, DROID-SLAM, requires over 11GB
of VRAM. Therefore, for larger underwater datasets, we use
a server equipped with an NVIDIA Quadro RTX 8000, which
offers 48GB of VRAM, for training.

1) Cube-Diorama Dataset: Results in 1d of Fig. 10 shows
the NeRF-SLAM rendered image obtained from the original
Cube-Diorama dataset. The fidelity of the reconstruction to the
actual environment (1a of Fig. 10) is notably high, showcasing
NeRF-SLAM’s ability to achieve high-quality reconstructions
in standard NeRF settings.

The rendered image from the underwater synthetic version
of the Cube-Diorama dataset is illustrated in 1e. The rendered
image appears blurry, with noticeable translucence effects
observed on the laptop at certain viewing angles. Furthermore,
object edges are indistinct.

2) Underwater Datasets: 3d and 3d showcase the rendered
image derived from the Underwater Caves Sonar Dataset.
Despite the inherent blurriness due to the low resolution of the
training images, the rendered image can display the seafloor
details relatively well compared with ground truth (Figure ??).
However, the medium effect results in low-contrast and blurry
reconstructions.

5d and 6d display the results for the Underwater Cemetery
Dataset. The seafloor in 5d appears clear, whereas the image in
6d is very blurry, making it impossible to identify the stones. A
similar issue occurs in 7d, where numerous floaters obscure the
bus. These issues arise primarily from two factors. First, the
DROID-SLAM neural network is trained with in-air datasets.
So, it produces poor depth maps and covariance estimates in
underwater settings and thus has a negative effect on NeRF
training. Second, the instant-NGP module in NeRF-SLAM
struggles with reconstructing large scenes. While the camera
in 5d is near the central area, the cameras in 6d and 7d are
positioned far from the start, causing NeRF to miss detailed
features in these distant areas.

3) Preprocess with Underwater GAN: The combination of
UGAN and NeRF-SLAM sometimes delivers the best results
among all tested methods, as shown in 2e and 5e. UGAN
effectively restores the original color of the scene and mitigates
medium effects. This shows the potential of preprocessing
underwater datasets prior to NeRF training. However, in 3e,
4e, 6e, and 7e, despite color restoration, the rendered images
lack detail. For instance, the red cone in 4e is much harder to
identify compared to 4d. This issue stems from the inconsistent
output of Underwater GAN. This problem can be seen in
3d and 4e. In 3d, the bottom right corner is darker due to
attenuation, whereas in 4e, both the top right and bottom right
corners appear dark.

C. SeaThru-NeRF

This section details the results of the SeaThru-NeRF-lite
algorithm for various datasets, including strengths and weak-
nesses of the algorithm. The discussion will focus on the Cube-
Diorama dataset [8], our underwater synthetic dataset, and the
Underwater Caves Vision and Sonar dataset [6]. Figure 11
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Dataset (frame) a. Ground Truth b. SeaThru c. SeaThru no-water d. NeRF-SLAM e. UGAN+NeRF-SLAM

1. Office (5)

2. UW-Office (5)

3. Cave (272)

4. Cave (367)

5. Cemetery (100)

6. Cemetery (296)

7. Bus (2030)

Fig. 10: NeRF reconstruction results from different methods on (row 1) original Cube-Diorama Dataset office scene [8], (row
2) underwater synthetic office scene, (row 3,4) Underwater Caves Sonar Dataset [6], (row 5,6) Underwater Cemetery Dataset
[7], and (row 7) Underwater Bus Dataset [7]. Brightness in 2a-2d is increased by 400% to improve readability. UGAN is not
applicable to the in-air office scene, so there are no results for 1e.

compares a) the ground truth testing image, b) the RGB render
with the medium, c) the no-medium render showing only the
object, and d) the estimated depth for various frames from the
datasets.

The SeaThru-NeRF scenes were trained in nerfstudio [12]
using the SeaThru-NeRF-lite model. Unfortunately due to
computing constraints we were only able to run the smaller
of the two provided models which used less GPU memory -
approximately 7GB instead of 23Gb. The models trained on a

Nvidia GeForce GTX 1650 GPU for 30,000 iterations with a
batch size of 2048 rays.

1) Cube-Diorama Dataset: As seen in figure 11, SeaThru-
NeRF was able to reconstruct the office scene quite well.
The ordinary office scene has no medium, so it is expected
that the RGB and no-medium renders are the same. However,
comparing the RGB (1b) and no-medium (1c) renderings
of the office scene from figure 11, some of the coloration
is different, especially visible on the back wall and table.
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Dataset (Frame) a. Ground Truth b. RGB Render c. No-Water Render d. Depth

1. office (80)

2. uw-office (80)
400% brightness

3. caves (224)

4. caves (358)

Fig. 11: SeaThr-NeRF reconstruction results of novel views from different datasets. Each frame is a novel view taken from
the test dataset. Row 1 is from the original Cube-Diorama Dataset office scene [8], row 2 is the underwater synthetic office
scene, and rows 3 and 4 are from the Underwater Caves Sonar and Vision dataset [6].

Additionally, the model did not capture the reflections off
the laptop screen, and introduced extra lighting on the back
wall. This may be due to using the smaller SeaThru-NeRF-lite
model, which may not be fully capturing the scene as well
as the larger model. However these are smaller details, and
SeaThru-NeRF does a very good job of recreating the overall
structure of the scene.

2) Underwater Synthetic Cube-Diorama Dataset: As seen
in figure 11 row 2, SeaThru-NeRF struggled recreating the
underwater scene. The closer details are visible in the render-
ings, but details further from the camera are not captured by
the NeRF model. SeaThru-NeRF notably is able to remove
the synthetically added medium as seen in 2c. Looking at the
depth map, however, shows that SeaThru-NeRF did not learn
the overall 3D structure of the scene.

One nuance of SeaThru-NeRF [3] and NeRFs in general
to note is the assumption that a sparse recreation of the
camera poses for each image are known before training [2].
The NeRF model can adjust the camera poses as necessary
during training to minimize the loss function, but is unable
to find these starting camera poses on its own. Therefore
a structure-from-motion algorithm, such as COLMAP, is a
necessary preprocessing step before the NeRF model can be
trained. This can present challenges when this algorithm fails.
This happened several times during training, including on the
Synthetic Underwater Cube-Diorama Dataset. In order to train
the model, the camera poses from the original non-underwater

dataset were used. On other datasets, like the Caves, Bus,
and Cemetery datasets, COLMAP only found poses for some
of the images, resulting in trained models that didn’t have
information about parts of the scene.

3) Underwater Caves Vision and Sonar Dataset: SeaThru-
NeRF did quite well at recreating scenes from the Underwater
Caves dataset. As seen in figure 11 rows 3 and 4, the RGB
renderings look very good and retain a lot of the details from
the test images. Textures are preserved pretty well, such as
the red on the rock and the purple plant in frame 224. In
frame 358, the cone is very clear in the image. Overall the
RGB renders look very good. However, looking at the no-
medium render, some of the seafloor was incorrectly modeled
as medium by SeaThru-NeRF. Additionally, the model does
not seem to have learned the depth super well, as the rocks
in frame 224 are not visible on the depth map, and in frame
358 the cone seems to be either very far or very near to the
camera.

V. CONCLUSION & FURTHER WORK

A. Image Reconstruction for NeRF

While UGAN provided better image quality for NeRF use,
the inconsistency with the temporal information seemed to
detract from the SLAM and NeRF capabilities of NeRF-
SLAM. While it seemed like the additional contrast for
the depth detection would help, the inconsistency of the
lighting and contrast makes it harder for DROID-SLAM to
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correctly predict the depth of each image. This led to a lot
of inconsistent results for NeRF, where some render angles
appear clean with others being extremely distorted. With this,
further work could be done to implement a GAN approach
to image reconstruction that considers temporal information
to keep image reconstruction consistent across an entire video
captured. Along with this, creating a GAN network that can
account for different image resolutions could help keep image
quality consistent across different datasets.

B. NeRF-SLAM

Although NeRF-SLAM performs well in standard NeRF
settings and small underwater scenes, significant improve-
ments are required for general underwater applications. Ad-
ditionally, its runtime performance does not meet the criteria
for a ’real-time system’. Using an Nvidia RTX 3080ti, we
achieve only 3 fps for tracking and fewer than 10 fps for
720p rendering.

C. SeaThru-NeRF

SeaThru-NeRF performs quite well in small underwater
scenes. The medium model allows the NeRF to effectively
learn underwater scenes. Despite the good performance in
smalls scenes, transfering to larger scenes, especially with no
are of focus in the scene proved difficult. One of the biggest
bottlenecks for SeaThru-NeRF was the structure-from-motion
algorithm used to provide initial camera poses. This often fully
or partially failed, which meant SeaThru-NeRF did not have
that data to train on. Further work on feature extraction and
SFM for scenes with light scattering media could help to make
SeaThru-NeRF more robust in general underwater scenes.
Especially in the application of AUVs, perhaps assumptions
of frames being sequential could be leveraged in the offline
recreation of the scene from AUV video data.
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APPENDIX

A. Code

Code for UGAN is available at https://github.com/
Zxl19990529/UGAN-pytorch.

Code for NeRF-SLAM is available at https://github.com/
tccoin/NeRF-SLAM.

Code for SeaThru-NeRF is available at https://github.com/
nerfstudio-project/nerfstudio.
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