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Summary
This report details the process we went through to create our Ballbot for ROB 311, along with
quantitative and qualitative analysis of the performance of our Ballbot during the final
competition. For our Ballbot, we used Solidworks to 3D model our components to build our
Ballbot. After manufacturing and assembling our Ballbot, we implemented control algorithms to
control our Ballbot and do a series of tasks. A depth analysis of the performance will be
introduced in the following.

Design
To create our robot assembly design, we used Solidworks to 3D model our acrylic plates, motor
mounts, pico board holder, and leash attachment. We modeled three acrylic plates that when
stacked together can hold each attachment we need for our robot. Each of these plates was
laser-cut in a CO2 laser cutter. On the bottom plate, our modeled motor mounts would be
attached around the edge each 120 degrees apart from each other. Along with that, our pico
board holder was attached to the bottom plate with some rubber dampeners to lessen the
vibrations felt by our inertial measurement unit. For our motor mounts, we created a design that
holds a Pololu 37D motor. We determined that these motors are the most efficient for our torque
and velocity requirements we found from defining torque and speed requirements based on the
Ballbot’s kinematics. We also connected to each motor two Omni wheels connected with a few
spaces. These Omni wheels allow our Ballbot to move in any direction and remove the friction
created by regular wheels moving perpendicular to the set angle.
Our second plate held our Raspberry Pi and our battery. On the top of the plate, we attached
our battery with velcro so it could easily be attached and removed when we needed to charge it.
Lastly, on the top plate, we attached our 3D-printed leash mount. This piece allowed us to attach
a leash to our Ballbot during testing to ensure when it fell it could be caught without taking any
damage.

Data Processing
The main components involved in our data processing were our Raspberry Pi and our Pico
board. These two pieces of hardware were responsible for collecting and processing the data
that comes from our motors and internal measurement unit. Our motors were fitted with
encoders that tracked the rotations of each wheel. This allows us to extract important
information such as wheel velocity and eventually ball velocity. Our IMU, the MPU-6050, gives
us information about the acceleration of our axes which also allows us to extract information
about the lean angle, angular velocity, and such for our Ballbot. With these two measurement
devices, we can gather this information through the Pico board.

Both the motors and IMU are connected to the Pico board. The Pico board handles all I2C
communication which is used to collect data from the IMU and the motors. The Pico also
handled sending any data back to the motors in terms of how much power to drive the motor
with. By using I2C communication, it allows us to efficiently have multiple communication
channels to interface with. This information was then sent to the Raspberry Pi through a serial
peripheral interface.
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The Raspberry Pi handles all the computation and code to calculate how we should be
controlling the motors based on the IMU and motor encoder values from the pico. The
Raspberry Pi takes in all this data and transforms it into readable data that we can use to
calculate the torques required to control our Ballbot and allows us to change how we want to
control it through the code we write. The Raspberry Pi acts as the brains of the system and then
sends back data to the Pico to control the motors to keep our Ballbot balanced.

Control Scheme
Balance PID Controller
Our balance controller was the main
driver that kept our Ballbot balanced.
Our balance controller was a simple PID
controller that utilized the measured lean
angles from the IMU as input and
calculated torques for each motor to
keep our Ballbot balanced at a desired
lean angle of zero degrees in the X and
Y directions. For our balance controller,
we saturated the output torques of the
PID controller to 0.6 to make sure that
the steering controller could apply torque but keep the balance controller dominant in the control
loop.

Here are the PID values for our Balance Controller: Kp = 8.5, KI = 0.01, KD = 0
We also saturated the KI value at 3 to limit the integral windup we often faced when trying to
tune the controller. We found that these PID values were the most optimal for keeping our
balance controller strong enough yet smooth.

Steering PID Controller
Our steering controller was the second addition to our control loop. This controller is also a PID
controller that utilizes the angular velocity of the ball to control the velocity at which the ball
moves. The desired velocity was determined by how much the joystick on the controller was
moved. We had our Joystick have a range of -1.2 to 1.2 radians per second to set the desired
velocity. Our actual angular velocity came from the encoders on the motors which were then
transformed to wheel speed, which then were used to calculate the ball velocity.

Here are the PID values for our Steering Controller: Kp = 0.15, KI = 0.085, KD = 0
With our steering controller, we made sure to saturate the output at 0.4 to ensure that the
steering controller never overpowered the balance controller. Along with this, we implemented a
deadband for our steering controller. This deadband was controlled by the lean angle and the
ball velocity. If the lean angle was greater than 0.4 or if the ball angular velocity was less than
0.5 radians per second, then we saturate the steering controller at 0.2. This was done to make
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sure that the steering controller is lessened when we go past a lean angle threshold and make
sure the balance controller is in full effect to keep the Ballbot balanced. Along with this, when
the Ballbot is not moving we don’t want the steering controller to apply too much torque when
the Ballbot is not moving too much. We decided to allow the steering controller to apply some
torque when under the 0.5 radians per second threshold to try and eliminate drift in the Ballbot.
Overall this steering controller mostly helped us eliminate drift in the Ballbot and allowed us to
control the movement with the use of a controller.

Balance Performance
Normal Balance
After implementing the balance controllers, we tested on how long our Ballbot can balance on
the basketball. r The balance controller was tested first. Without the help from the steering
controller, the Ballbot can stay on the ball for 8 mins then fall off. During the process, the Ballbot
drifted a lot . This is inherently a problem with the balance controller, as even though the
controller tries to keep the Ballbot balanced, if a disturbance occurs and creates velocity, the
balance controller is not able to create torque to counteract this velocity. Some of this
disturbance may be caused by the IMU data not being perfect with some velocity being created
from our balance controller trying to match the lean angle. A possible solution would be to tune
our lowpass filter a bit better to cut out more frequencies, but this comes at a cost of processing
speed and such.

After testing the balancing controller solely, we combined it with the steering controller. The
overall performance, in terms of balancing time, was the same, which balanced for around 9
minutes. However, the drifting was a lot better. When the Ballbot moves in one direction with a
certain velocity, the steering controller will apply more torque in that direction and make the
Ballbot upright again. Therefore, the drifting we had for the balance controller can be adjusted
by the steering controller. During the testing, a little drifting still existed, which might be due to
the reasons that the saturation values we set for the balance controller (0.6 torque ) and
steering controller (0.4 torque) might not have been tuned enough. The steering controller might
either need to put more or less effort, so tuning the saturation value for the steering controller
might be helpful. Also, the drift might be caused by the drifting velocity never reaching the
deadband we set. Therefore the torques applied by the steering controllers under the deadband
might not be enough to fix the drifting.

Hexapod Balance
Besides the non-disturbance test, we also tested on a Hexapod to get a deeper analysis of the
balance performance. With some disturbances applied to the system, the system becomes less
stable and drifts more; however, the Ballbot can still sit on the ball for 2 minutes on the hexapod.
All these behaviors are understandable. Since we gave the system disturbances, which make
the Ballbot harder to balance. For this test, we utilized the controller to steer the Ballbot on the
hexapod pad to ensure it would not drift off of the small balance area.
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Step Response

From the step responses, we can see that our balance controller follows the desired angle quite
well when given a step response. The main issue we see in this graph is the many spikes in the
actual lean angle. This comes from noise in the IMU readings. One thing that we could improve
is the lowpass filter we use to filter the lean angle to get a smoother graph which may help our
balance controller. The only downside of refining the filter may cause a higher delay in the
signal. Overall, our balance controller is sufficient to control balancing given disturbances. This
is also seen in our hexapod testing from before.

Steering Performance
Step Response:
From our step responses, we can see that our steering
control does fairly well when given inputs. One thing that
is noticed is that the controller takes a bit to reach the
desired value. This may be due to the Kp value being too
small. The reason we decided not to increase this Kp

value was because we would notice oscillations start to
occur when we were at a steady state. We decided to
rely on the Ki value since it would help eliminate drifting
when trying to balance. This is because a slight drift
would cause the integral term to build up and help
eliminate the drift in the system.

4’ x 4’ Square Challenge:
To plot the 2D top-down view of the Ballbot navigating
through a 4’ * 4’ square. We recorded the phi_x and phi_y
while the Ballbot was driving square. Then we multiply the
ball radius to get the ball displacement of the Ballbot in
the x and y directions.

As shown in Figure 7, the red line is the Reference Path,
and the blue line is the Actual Path we get from the
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encoder reading. The blue line is approximately a square, but it drifts a lot in the angles. The
whole graph rotates in certain angles. This might be due to the reason that when we drive the
Ballbot to go around the square, the chassis spins a little (caused by the balance and steering
controller). The encoders read data from the local frame of the Ballbot. When the chassis spins
a little, the phi_x and phi_y data will be recorded in the robot’s frame, not in the world frame.
This might be the reason why our Ballbot is not going vertically at the beginning of the drive
square, even though it is on the line in reality. Along with this, we used the PS4 controller to
make the Ballbot drive, which is pretty unstable and hard to control. Therefore some round
curves are drawn in the figure.

Maximum Angular Velocity
Getting the maximum angular velocity that the Ballbot
can have under balancing is straightforward. We
extracted the dphi_z data from the encoders and plot this
data. The reason why we choose to use dphi_z is that
when the Ballbot is spinning, the ball itself rarely spins.
Therefore the dphi_z describes the angular velocity of
the chassis in the same magnitude but in the opposite
direction. To make the graph clearer, we take the
absolute value of the angular velocity, since the direction
the Ballbot spins doesn’t affect the magnitude. In Figure
8, some spikes like the one at around 13 seconds and
the one at 25 seconds were ignored. These are some outliers that were recorded when the
Ballbot became too unbalanced. Generally, the maximum angular velocity of the Ballbot is
around 1.4 rad/sec. The reason this is our maximum is that the motors can't apply enough
torque to balance the Ballbot when they are already spinning to apply torque along the z-axis.
Essentially, the balance and steering controller get overwhelmed by the torque used to spin the
ball. This makes it extremely difficult for the Ballbot to balance.
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APPENDIX:

Solidworks Render

Figure 9 - Solidworks Render of Ballbot
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Code

"""
ROB 311 - Ball-bot steering boilerplate code

Authors: Senthur Ayyappan, Japmanjeet Singh Gill, and Elliott Rouse
Neurobionics Lab / Locomotor Control Lab
"""

import sys
from threading import Thread
import time
import numpy as np

from MBot.Messages.message_defs import mo_states_dtype, mo_cmds_dtype,
mo_pid_params_dtype
from MBot.SerialProtocol.protocol import SerialProtocol

from collections import deque
from DataLogger import dataLogger

from loop import SoftRealtimeLoop
from ps4 import BBController

from constants import *
from simple_pid import PID

from transformations import transform_w2b, compute_motor_torques

import FIR as fir

# Initializing lowpass filters for the ball-velocity estimates.
# Please note that these filters can be modified to filter the IMU data,
# ball velocity, or ball position.
lowpass_filter_dphi_x = fir.FIR()
lowpass_filter_dphi_x.lowpass(N, Fn)

lowpass_filter_dphi_y = fir.FIR()
lowpass_filter_dphi_y.lowpass(N, Fn)

def register_topics(ser_dev:SerialProtocol):
# Mo :: Commands, States
ser_dev.serializer_dict[101] = [lambda bytes: np.frombuffer(bytes, dtype=mo_cmds_dtype),

lambda data: data.tobytes()]
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ser_dev.serializer_dict[121] = [lambda bytes: np.frombuffer(bytes, dtype=mo_states_dtype),
lambda data: data.tobytes()]

def wma_filter(wma_window):
return np.sum(WMA_NORM * wma_window)

if __name__ == "__main__":

trial_num = int(input('Trial Number? '))
filename = 'ROB311_Test_%i' % trial_num
dl = dataLogger(filename + '.txt')

t_start = 0.0

ser_dev = SerialProtocol()
register_topics(ser_dev)

# Initializing a thread for reading data from the Pico
serial_read_thread = Thread(target = SerialProtocol.read_loop, args=(ser_dev,),

daemon=True)
serial_read_thread.start()

# Local data structures for storing the data obtained from the Pico
commands = np.zeros(1, dtype=mo_cmds_dtype)[0]
states = np.zeros(1, dtype=mo_states_dtype)[0]

# Local variables for the controller
psi = np.zeros((3, 1))
psi_offset = np.zeros((3, 1))

dpsi = np.zeros((3, 1))

phi = np.zeros((3, 1))
dphi = np.zeros((3, 1))
prev_phi = phi
theta_x = 0.0
theta_y = 0.0

dphi_x = 0.0
dphi_y = 0.0
dphi_z = 0.0

# deque is a data structure that automatically pops the previous data based on its max length.
theta_x_window = deque(maxlen=WMA_WINDOW_SIZE) # A sliding window of values
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theta_y_window = deque(maxlen=WMA_WINDOW_SIZE) # A sliding window of values

for _ in range(WMA_WINDOW_SIZE):
theta_x_window.append(0.0)
theta_y_window.append(0.0)

# Net Tx, Ty, and Tz initialization
Tx = 0.0
Ty = 0.0
Tz = 0.0

# Steering controller torques: Tx_steer, Ty_steer, and Tz_steer initialization
Tx_steer = 0.0
Ty_steer = 0.0
Tz_steer = 0.0

# Stability controller torques: Tx_bal, Ty_bal, and Tz_bal initialization
Tx_bal = 0.0
Ty_bal = 0.0
Tz_bal = 0.0

# T1, T2, and T3
T1 = 0.0
T2 = 0.0
T3 = 0.0

error_x_sum_bal = 0
error_x_bal = 0
error_y_sum_bal = 0
error_y_bal = 0

commands['start'] = 1.0
zeroed = False

# Time for communication between the RPi and Pico to be established
time.sleep(1.0)
ser_dev.send_topic_data(101, commands)

# Set points for the stability controller (along x|roll and y|pitch).
theta_roll_sp = 0.0
theta_pitch_sp = 0.0

# Set points for the steering controller (along x|roll and y|pitch).
dphi_roll_sp = 0.0
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dphi_pitch_sp = 0.0

dphi_roll_pid_components = np.array([0.0, 0.0, 0.0])
dphi_pitch_pid_components = np.array([0.0, 0.0, 0.0])
dphi_roll_pid = PID(DPHI_KP, DPHI_KI, DPHI_KD, dphi_roll_sp)
dphi_pitch_pid = PID(DPHI_KP, DPHI_KI, DPHI_KD, dphi_pitch_sp)
dphi_roll_pid.output_limits = (-MAX_VEL_DUTY, MAX_VEL_DUTY)
dphi_pitch_pid.output_limits = (-MAX_VEL_DUTY, MAX_VEL_DUTY)

print('Starting the controller!')
i = 0

# This thread runs in parallel to the main controller loop and listens for any PS4 input
# from the user. The PS4 controller is used to update setpoints the steering controller and to

tune
# the controller gains on the fly. Please refer to the ps4.py file for more details.
bb_controller = BBController(interface="/dev/input/js0", connecting_using_ds4drv=False)
bb_controller_thread = Thread(target=bb_controller.listen, args=(10,))
bb_controller_thread.start()

# Entering our main control loop, which is set to run at 200 Hz.
# Feel free to experiment with the frequency of the controller loop by
# changing the value of "FREQ" variable in constants.py.
for t in SoftRealtimeLoop(dt=DT, report=True):

# Reading data from the Pico, if it isn't available, then skip this iteration.
# This is true when the Pico is connected and is collecting the IMU offsets.
try:
states = ser_dev.get_cur_topic_data(121)[0]

except KeyError as e:
# Calibrates for 10 seconds
print("<< CALIBRATING :: {:.2f} >>".format(t))
continue

# Extracting the Motor Encoder values from the Pico's data
psi[0] = states['psi_1']
psi[1] = states['psi_2']
psi[2] = states['psi_3']

dpsi[0] = states['dpsi_1']
dpsi[1] = states['dpsi_2']
dpsi[2] = states['dpsi_3']
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# A sliding window of "WMA_WINDOW_SIZE" values for the WMA filter
# on the IMU values. Please edit the constants.py file to change the
# WMA_WINDOW_SIZE and the WMA_WEIGHTS.
theta_x_window.append(states['theta_roll'])
theta_y_window.append(states['theta_pitch'])

# Applying a WMA filter on the IMU values
theta_x = wma_filter(theta_x_window)
theta_y = wma_filter(theta_y_window)

# A ten second wait to place the bot on top of the ball--this is to
# reset the encoder values so that at i=0, the ball-bot's position is (0, 0)
if t > 11.0 and t < 21.0:
print("<< PLACE THE BOT ON TOP OF THE BALL :: {:.2f} >>".format(t))

elif t > 21.0:
if not zeroed:
psi_offset = psi
zeroed = True

psi = psi - psi_offset

# Transforming wheel attributes (position and velocity) to ball attributes.
phi[0], phi[1], phi[2] = transform_w2b(psi[0], psi[1], psi[2])
dphi[0], dphi[1], dphi[2] = transform_w2b(dpsi[0], dpsi[1], dpsi[2])

# Lowpass filtering the ball-velocity estimates
dphi_x = lowpass_filter_dphi_x.filter(dphi[0][0])
dphi_y = lowpass_filter_dphi_y.filter(dphi[1][0])
dphi_z = lowpass_filter_dphi_y.filter(dphi[1][0])

# Few conditional statements to start the time counter only
# after the ball-bot is placed on top of the ball.
if zeroed:
if i == 0:
t_start = time.time()

i = i + 1
t_now = time.time() - t_start

# PID - Balance Controller (along x|roll and y|pitch).
# Your PID implementation goes here
# Controller error terms

theta_roll_sp = bb_controller.theta_x_sp
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theta_pitch_sp = bb_controller.theta_y_sp

error_x_bal = theta_roll_sp - theta_x
error_y_bal = theta_pitch_sp - theta_y
error_x_sum_bal = error_x_bal + error_x_sum_bal
error_y_sum_bal = error_y_bal + error_y_sum_bal

if (error_x_sum_bal > 3):
error_x_sum_bal = 3

if (error_x_sum_bal < -3):
error_x_sum_bal = -3

if (error_y_sum_bal > 3):
error_y_sum_bal = 3

if (error_y_sum_bal < -3):
error_y_sum_bal = -3

# if(np.abs(theta_x) < np.deg2rad(2)):
# error_x_sum_bal = 0
# if(np.abs(theta_y) < np.deg2rad(2)):
# error_y_sum_bal = 0

Tx_bal = (PITCH_THETA_KP * error_x_bal) + (PITCH_THETA_KI * error_x_sum_bal)
Ty_bal = (ROLL_THETA_KP * error_y_bal) + (ROLL_THETA_KI * error_y_sum_bal)

Tz_bal = 0

###############
## Start the steering controller if there is a change in the
## ball-velocity (dphi) setpoint using the PS4 controller.
if np.abs(bb_controller.dphi_y_sp) > DPHI_DEADBAND or np.abs(bb_controller.dphi_x_sp)

> DPHI_DEADBAND:
dphi_pitch_pid.setpoint = bb_controller.dphi_y_sp
dphi_roll_pid.setpoint = bb_controller.dphi_x_sp

Tx_steer = dphi_roll_pid(dphi_x)
Ty_steer = dphi_pitch_pid(dphi_y)

# Also start the steering controller if the ball-velocity is greater than
# DPHI_DEADBAND (0.5 rad/sec) to prevent the ball-bot from drifting around
elif np.abs(dphi_x) > DPHI_DEADBAND or np.abs(dphi_y) > DPHI_DEADBAND:
dphi_roll_pid.setpoint = 0.0
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dphi_pitch_pid.setpoint = 0.0

Tx_steer = dphi_roll_pid(dphi_x)
Ty_steer = dphi_pitch_pid(dphi_y)

else:
dphi_roll_pid.reset()
dphi_pitch_pid.reset()
Tx_steer = 0.0
Ty_steer = 0.0

# Max Lean angle (Theta) constraint: If theta is greater than the maximum lean angle
# (4 degrees), then turn off the steering controller.

# Summation of planar torques
# Stability controller + Steering controller

# if np.abs(Tx) > MAX_PLANAR_DUTY:
# Tx_bal = np.sign(Tx) * MAX_PLANAR_DUTY

# if np.abs(Ty) > MAX_PLANAR_DUTY:
# Ty_bal = np.sign(Ty) * MAX_PLANAR_DUTY

# if np.abs(Tx) > MAX_PLANAR_DUTY:
# Tx_steer = np.sign(Tx) * MAX_PLANAR_DUTY

# if np.abs(Ty) > MAX_PLANAR_DUTY:
# Ty_steer = np.sign(Ty) * MAX_PLANAR_DUTY

# if(Tx_steer != 0):
# if(Tx_steer > 0.3):
# Tx_steer = 0.3
# elif(Tx_steer < -0.3):
# Tx_steer = -0.3
# if(Tx_bal + Tx_steer > 0.75):
# Tx_bal = 0.75 - Tx_steer
# elif(Tx_bal + Tx_steer < -0.75):
# Tx_bal = -0.75 - Tx_steer
if np.abs(theta_x) > MAX_THETA or np.abs(theta_y) > MAX_THETA:
dphi_roll_pid.setpoint = 0.0
dphi_pitch_pid.setpoint = 0.0
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Tx_steer = dphi_roll_pid(dphi_x)
Ty_steer = dphi_pitch_pid(dphi_y)
# Tx_steer = Tx_steer - (np.sign(Tx_steer)*0.03)
# Ty_steer = Ty_steer - (np.sign(Tx_steer)*0.03)
if np.abs(Tx_bal) > MAX_PLANAR_DUTY:
Tx_bal = np.sign(Tx_bal) * MAX_PLANAR_DUTY

if np.abs(Ty_bal) > MAX_PLANAR_DUTY:
Ty_bal = np.sign(Ty_bal) * MAX_PLANAR_DUTY

if np.abs(Tx_steer) > 0.2:
Tx_steer = np.sign(Tx_steer) * 0.2

if np.abs(Ty_bal) > 0.2:
Ty_steer = np.sign(Ty_steer) * 0.2

else:
if np.abs(Tx_bal) > MAX_STA_DUTY:
Tx_bal = np.sign(Tx_bal) * MAX_STA_DUTY

if np.abs(Ty_bal) > MAX_STA_DUTY:
Ty_bal = np.sign(Ty_bal) * MAX_STA_DUTY

Tz_steer = bb_controller.Tz

Tx = Tx_bal + Tx_steer
Ty = Ty_bal + Ty_steer
Tz = Tz_bal + Tz_steer

# ---------------------------------------------------------
# Saturating the planar torques
# This keeps the system having the correct torque balance across the wheels in the face of

saturation of any motor during the conversion from planar torques to M1-M3
if np.abs(Tx) > MAX_PLANAR_DUTY:
Tx = np.sign(Tx) * MAX_PLANAR_DUTY

if np.abs(Ty) > MAX_PLANAR_DUTY:
Ty = np.sign(Ty) * MAX_PLANAR_DUTY

# Conversion of planar torques to motor torques
T1, T2, T3 = compute_motor_torques(Tx, Ty, Tz)

# Sending motor torque commands to the pico
commands['motor_1_duty'] = T1
commands['motor_2_duty'] = T2
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commands['motor_3_duty'] = T3

ser_dev.send_topic_data(101, commands)

if zeroed:
print(" << Iteration no: {}, DPHI X: {:.2f}, DPHI Y: {:.2f} THETA X: {:.2f}, THETA Y:

{:.2f}>>".format(i, dphi[0][0], dphi[1][0], theta_x, theta_y))
# print("Iteration no. {}, ERROR X: {:.2f}, ERROR Y: {:.2f}, ERRORSUM X: {:.2f},

ERRORSUM Y: {:.2f}".format(i, error_x_bal, error_y_bal, error_x_sum_bal, error_y_sum_bal))
#print("Iteration no. {}, ERROR X STEER: {:.2f}, ERROR Y STEER: {:.2f}, ERRORSUM

X STEER: {:.2f}, ERRORSUM Y STEER: {:.2f}".format(i, error_x_steer, error_y_steer,
error_x_sum_steer, error_y_sum_steer))

print("Iteration no. {}, Tx: {:.2f}, Ty: {:.2f}, Tx Steer: {:.2f}, Ty Steer: {:.2f}, Tx bal: {:.2f}, Ty
bal: {:.2f}".format(i, Tx, Ty, Tx_steer, Ty_steer, Tx_bal, Ty_bal))

print("Iteration no. {}, Controller x: {:.2f}, Controller y: {:.2f}".format(i,
bb_controller.dphi_x_sp, bb_controller.dphi_y_sp))

# Construct the data matrix for saving - you can add more variables by replicating the
format below

data = [i] + [t_now] + \
[states['theta_roll']] + [states['theta_pitch']] + \
[Tx] + [Ty] + [Tz] + \
[T1] + [T2] + [T3] + \
[Tx_steer] + [Ty_steer] + [dphi_x] + [dphi_y] + [dphi_z] + \
[phi[0][0]] + [phi[1][0]] + [phi[2][0]] + \
[dphi_roll_pid.setpoint] + [dphi_pitch_pid.setpoint] + \
[theta_roll_sp] + [theta_pitch_sp]

dl.appendData(data)

print("Resetting Motor commands.")
time.sleep(0.25)
commands['motor_1_duty'] = 0.0
commands['motor_2_duty'] = 0.0
commands['motor_3_duty'] = 0.0
time.sleep(0.25)
commands['start'] = 0.0
time.sleep(0.25)
ser_dev.send_topic_data(101, commands)
time.sleep(0.25)

dl.writeOut()

Some constant definitions are in the attached file and submitted through canvas
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