
Autonomous Underwater Vehicle Final Project:
ROB 599

Christian Foreman
University of Michigan
cjforema@umich.edu

Nithish Kumar
University of Michigan
nithishk@umich.edu

Max Rucker
University of Michigan

mruck@umich.edu

Jack Wischmeyer
University of Michigan
jmwisch@umich.edu

I. INTRODUCTION

Our group decided to model an autonomous underwater
vehicle (AUV) for this project. For our model, we utilize the
AUV II created by the Naval Postgraduate School [1]. This
is a submersible that consists of two rudders on the back,
multiple controllable fins, and a hull with a programmable
computer and battery allowing for autonomous control of the
vehicle. In this report, we will give an overview of our current
work with modeling the motion of the AUV with linearized
equations across different subsystems for control.

II. BACKGROUND

A. Reference Frames

• The global(Earth) fixed frame has its x and y axes in a
horizontal plane, and a z-axis (positive downward). This
is an inertial frame.

• The body fixed frame has its origin at the center of mass
of the AUV. The x-axis points forward, the z-axis points
downward, and the y-axis completes the right-hand rule.

B. Assumptions

Assumptions were taken from [1], [2], and Professor Gi-
rard’s Slides:

1) The AUV II is neutrally buoyant.
2) The AUV is symmetrically loaded in the transverse

direction and the vertical center of buoyancy is midway
between the top and bottom of the AUV II.

3) The counter-rotating propellers produce no yaw moment.
4) The products of inertia about the body system are zero

because the AUV II possesses two axes of symmetry.
5) The AUV II acceleration and deceleration rates are small

enough so that propeller slip can be neglected.
6) The effect of cross-coupled hydrodynamic coefficients

can be neglected in most cases, again because of the
AUV II geometric symmetry.

7) Gravity is constant and uniform.
8) Current is constant and in the lateral x, y plane. We may

investigate a variable current in the future.
9) The mass matrix is nominally constant and invertible.

C. Variables and Parameters

There are a ton of different variables and parameters to de-
scribe the motion of the AUV. Descriptions of these variables
can be found in the appendix as well as [1]–[3].

III. EQUATIONS OF MOTION

Based on our assumptions and [1, 2], we get the following
equations of motion for our AUV:

HEAVE EQUATION OF MOTION

mẇ −mxGq̇ − Zq̇ q̇ − Zẇẇ = muq −mvp

−mxGpr +mzG(p
2 + q2) + Zquq + Zwuw

+u2(Zδsδs + Zδbδb)−
∫ xnose

xtail

[Q(x)]
(w − xq)

Ucf (x)
dx

(1)

SURGE EQUATION OF MOTION

mu̇+mzGq̇ −Xu̇u̇ = mvr −mwq +mxGq
2

+mxGr
2 −mzGpr +Xrrr

2 +Xvvv
2 + u2Xprop

+u2(Xδsδsδ
2
s +Xδbδbδ

2
b +Xδrbδrbδ

2
rb +Xδrsδrsδ

2
rs)

(2)

SWAY EQUATION OF MOTION

mv̇ +mxGṙ −mzGṗ− Yṙ ṙ − Yv̇ v̇ =

mwp−mur −mxGpq −mzGqr

+Yrur + Yvuv + u2(Yδrbδrb + Yδrsδrs)

−
∫ xnose

xtail

[Q(x)]
(v + xr)

Ucf (x)
dx

(3)

ROLL EQUATION OF MOTION

IX ṗ−mzGv̇ −Kṗṗ =

(IY − IZ)qr +mzGur −mzGwp+

Kpup− (zGW − zB)cosθsinϕ

(4)

PITCH EQUATION OF MOTION

Iy q̇ −mxGẇ +mzGu̇−Mq̇ q̇ −Mẇẇ =

(Iz − Ix)pr −mxGuq +mxGvp

+mzGvr −mzGwq +Mquq +Mwuw

+u2(Mδsδs +Mδbδb)− (zGW − zBB)sinθ

−
∫ xnose

xtail

[Q(x)]
(w − xq)

Ucf (x)
xdx

(5)

YAW EQUATION OF MOTION

Iz ṙ −mxGv̇ −Nṙ ṙ −Nv̇ v̇ =

(Ix − Iy)pq −mxGur +mxGwp+Nrur +Nvuv

+u2(Nδrbδrb +Nδrsδrs) + (xGW − xBB)cosθsinϕ

+u2Nprop −
∫ xnose

xtail

[Q(x)]
(w − xq)

Ucf (x)
xdx

(6)

Where:

Q(x) = CDyh(x)(v + xr)2 + CDzb(x)(v + xr)2

Ucf (x) = [(v + xr)2 + (w − xq)2](1/2)

IV. LINEARIZATION

We split up the linearization of the AUV into separate
functions of speed, diving, and steering control. This splits
the system into noninteracting (lightly interacting) subsystems
which makes the system easier to analyze. The following
briefly describes what states each system controls:

• Speed: [u(t)]
• Steering: [v(t), r(t), ψ(t)]
• Diving: [q(t), θ(t), Z(t)]

The following sections describe the linearized systems for
each of these controls taken from [2]. These are linearized
along a nominal flight path. Since we are not yet on the control
of our systems, we will assume no/constant control for now.

A. Speed

The speed of the AUV controls its longitudinal motion.
From [2] we get that:

u̇(t) = −αu(t)|u(t)|+ (αβ)n(t)|n(t)| (7)

Where:

α =
ρL2Cd

2m+ ρL3Xu̇
, β =

u20
n20

With u0 = 1.832m
s being the nominal velocity of the AUV

and n0 = 52.359 rads
s being the nominal propeller speed

of the AUV. Because we are not using the the designed
controller from [2], we ignore the n(t)|n(t) component of
the linearization.

We attempt to linearize u̇(t) and get the following:

u̇(t) = −2αu(t) + 2αβn(t) (8)

With this linearization we can model the speed of our AUV.
Figure 1 shows the function of u(t) with different initial
speeds. As time goes on, we can see the speed converge to
zero for varying initial speeds.

Fig. 1. Speed u(t) with different initial speeds

B. Vertical Motion

From [2], the linearized diving system dynamics are given
by the following system of equations: q̇(t)θ̇(t)

Ż(t)

 =

−0.7 −0.3 0
1 0 0
0 −u0 0

 q(t)θ(t)
Z(t)

+

0.0350
0

 δs(t) (9)

In [2], they use δs(t) as the control input. Since we are
currently not implementing control for our system we can
ignore δs(t). With this linearization, we can model the diving
motion of the AUV. We show the depth trajectories in Figure 2
with constant speed u0 = 1.832m

s . In every initial condition,
we set the AUV’s depth to 1 meter and vary the initial pitch
(θ) and angular velocity’s pitch (q). We can see that, with no
changes in the pitch, the depth stays constant. If we vary the
pitch, the AUV will either move up or down depending on
the magnitude of the pitch or the initial angular velocity. Over
time, the pitch angle levels out to 0.

Fig. 2. Depth trajectories with different initial conditions [q,Θ, Z].

In Figure 3, we simulate the pitch angle θ of the AUV. For
this case, we don’t modify the Z value in the initial condition,
as the depth does not impact the pitch. For the cases where we
modify the initial θ value, we see that the pitch goes to zero
and slightly overshoots it before stabilizing at zero. When we

modify the initial angular velocity in pitch (q), we see that
the pitch angle increases, reaches a maximum as the angular
velocity in pitch becomes 0, and then the pitch converges back
to a value of zero.

Fig. 3. Pitch trajectories with different initial conditions [q,Θ, Z].

In Figure 4, we are measuring the angular velocity of the
pitch q of the AUV. The depth of our AUV does not affect
the change in the angular velocity of the pitch. The main two
initial conditions being changed are the angular velocity of
the pitch and the pitch itself. With these two initial conditions
being set in various ways, we can see that the values are
consistently attracted to zero and slightly overshoot the value,
but then slowly stabilize to a value of zero.

Fig. 4. Angular velocity in pitch with different initial conditions [q,Θ, Z].

C. Lateral Motion

The lateral motion of the AUV is based on the steering
control. The position of the vehicle can be determined by:

Ẋ(t) = u(t)cosψ(t)− v(t)sinψ(t) + ucx

Ẏ (t) = u(t)sinψ(t) + v(t)cosψ(t) + ucy
(10)

We can express the linearization of the lateral motion with: v̇(t)ṙ(t)

ψ̇(t)

 = A2

v(t)r(t)
ψ(t)

+ b2δr(t) (11)

Where:

A2 =

[m1 m2

m3 m4

]−1

×
[
Y1 Y2
N1 N2

]
0

0 1 0

 (12)

and

b2 =

[m1 m2

m3 m4

]−1

×
[
Y3
N3

]
0

 (13)

Where the values of m1,m2,m3,m4 are provided in [3] and
the values of Y1, Y2, Y3, N1, N2, N3 are found in [2].

With this linearization done, we can view trajectories based
on different initial conditions. Again, since we are not paying
attention to the controller from [2], we ignore δr(t). In Figure
5, we are modeling the yaw with different initial conditions.
From these initial conditions, the angular velocity of yaw
changes directly acts on the rate of change in yaw. We can
also notice that sway velocity has an inverse relationship with
yaw, causing a decrease in yaw as the sway velocity increases.

Fig. 5. Yaw with different initial conditions [v, r,Ψ].

In Figure 6, we are measuring the angular velocity of the
yaw of the AUV. Here, we can see that angular velocity only
depends on the initial conditions set for the angular velocity
and slowly returns to a value of 0 after a bit of time.

In Figure 7, we are measuring the Sway velocity of the
AUV. From looking at this figure, we can see that the Sway
velocity is slightly affected by the Yaw angular velocity but
eventually steadies back to a value of 0 after a bit of time.

in Figure 8, we plot X and Y based on different values of a
constant ψ with an initial speed of u0. We can see that, based
on the initial heading of yaw (ψ), we get a corresponding
trajectory in that direction.

V. STABILITY

To find the stability of our separate subsystems, we need to
calculate the eigenvalues of each equation. This can easily be
done by using the ”eig()” function in Matlab and inputting the
A matrix of each equation. We explain the stability of each
subsystem in the following.

Fig. 6. Yaw with different initial conditions [v, r,Ψ].

Fig. 7. Yaw with different initial conditions [v, r,Ψ].

Fig. 8. X and Y Trajectories based on different values of ψ

A. Speed

The eigenvalue of u̇(t) gives us a value of λ = −0.0195.
This corresponds to the speed being stable as the eigenvalue
is negative. This eigenvalue gives us a time constant of τ =
51.2820s.

B. Vertical Motion

The eigenvalues from the A matrix for vertical motion are
λ1,2 = −0.35 ± 0.4213i, λ3 = 0. In this case, since the real
component of the eigenvalues are negative, and there is an
imaginary component, this system is stable and has damped
oscillations. The natural frequency of this system is ω0 =
0.548 rads

s with a damping ratio of ζ = 0.639.

C. Lateral Motion

The eigenvalues from the A matrix for the lateral motion
are λ1,2 = −0.2499± 0.0927i, λ3 = 0. Since the eigenvalues
have negative real components along with an imaginary value,
the system is stable and has damped oscillations. The natural
frequency of this system is ω0 = 0.266 rads

s with a damping
ratio of ζ = 0.938.

VI. PID CONTROL

A. Controllability

The first step in designing a controller for our system
is to determine if the state-space equations we have are
controllable or not. To determine this, we used the ctrb()
function in Matlab. This function returns the number of
controllable variables within our state-space model given the
A and B matrices for each system. Using this, we determined
that every variable within our three models of speed, vertical
motion, and lateral motion are controllable.

One thing of note is how our b matrices for the vertical and
lateral motion work. In these matrices, we can see that there
are variables we directly control with our control input δ(t)
while other variables get canceled out by zeros in the b matrix.
For example in the b matrix for vertical motion, the control
part of the equation is only directly affecting q(t) with a factor
of 0.035 while the other variables have a 0. With this, we are
only controlling the angular velocity of the pitch. While this
is true, controlling the angular velocity of pitch allows us to
indirectly control pitch angle, which then indirectly controls
depth.

B. Designing the PID Controllers

Since we are splitting up our AUV system into three parts,
we decided to create three PID loops to control each part:
speed, lateral, and vertical motion. The errors for these three
PID loops are defined as follows:

• Speed PID controller error: the differece between the
target speed and the current speed.

• Lateral PID controller error: the difference between the
desired yaw heading (yaw heading to point the sub from
the current XY the target XY) and the current yaw
heading.

• Vertical PID controller error: the difference between the
target pitch and the current pitch.

C. Tuning

The PID tuning process is relatively simple. We started out
by setting the P, I, and D terms all to zero. From here, we tuned
just the P term to get a P controller. This roughly defines the
response time of our system, however, just P control normally
results in steady state error. To help with this steady state
error, we then tune the I term. This term is normally relatively
small compared to P, so we chose smaller values until we got
relatively good steady state error. With just PI control, all of
our controllers work pretty well. In Figure 9, you can see the
different outcomes for our Pitch control when tuning our PI
controllers with different Kp and Ki values.

Fig. 9. Pitch PI Controller with Different Kp and Ki Values

We also explored how adding the D term to our control
would help (Figure 10. However, since our PI controller was
already solid, we found that adding the D term did not improve
any of our controllers. Therefore, we solely stuck with PI
controllers.

Fig. 10. Pitch PID Controller with Different Kd Values

D. Final Controllers

After tuning all of our controllers, we can define them in
the form of PID controllers: Kpe(t)+Ki

∫ t0
t
e(t) dt+Kd

de(t)
dt

Speed Controller:

n(t) = 5000e(t) + 10

∫ t0

t

e(t) dt (14)

Lateral Controller:

δs(t) = 0.5e(t) (15)

Vertical Controller:

δr(t) = 0.7e(t) + 0.06

∫ t0

t

e(t) dt (16)

We found that these values resulted in good response times
and low steady state error. We noticed that in order for us to
see good speed control, we needed to set the Kp to a very
high value. This is an area we should further explore to make
sure it is realistic. Also, for our lateral controler, we set the
Ki, to zero, meaning there is no integration term. We found
that, for even small values of Ki, the AUV would perform
very poorly when there was ocean currents. Thus, we decided
to remove the integration term for Lateral Control.

VII. WAYPOINT NAVIGATION

A. Control Logic

With our tuned PID controllers we are able to implement
a simple control loop to navigate to various waypoints. The
overall logic of our controller looks like:

1) Determine what waypoint to navigate to.
2) Navigate to the desired depth (Z value) while maintain-

ing the nominal speed and turning the AUV towards the
desired X/Y.

3) Once the desired depth is within the threshold distance,
focus on turning the AUV towards the waypoint in the
XY Plane. While turning the AUV, slow down its speed
to 0.

4) Once the yaw heading is within an angle threshold,
speed up the AUV until it hits the waypoint.

5) Check if the position is within the threshold distance of
the waypoint, if so, select a new waypoint and run these
steps again. If not within the threshold, run steps 2-5
again.

In short, we first control the AUV to reach the target
depth, rotate the AUV’s yaw to point towards the XY lateral
component, and then speed up until we hit the waypoint.

B. Selecting Waypoints

Our AUV is approximately 5.3 meters long, and it is meant
for travelling large distances in the ocean, mostly in the XY
plane. Thus, we chose are waypoints to be on the scale of 0
to 1000 meters and our depth to be 0 to 100 meters. To keep
things consistent for this report, we will be using the order of
waypoints from Table I to demonstrate our controller. Also,
the AUV starts at 0 in the X and Y, with a depth of 10 (0, 0,
10). We find this list of waypoints to be a good example of
how our controller acts in many situations.

Waypoint # X Y Z
1 50 0 40
2 90 30 35
3 20 20 50
4 40 -20 30
5 20 0 5
6 100 50 15
7 120 30 40

TABLE I
LIST OF WAYPOINTS

One area of concern when selecting waypoints was the
disregard for the maximum allowable pitch angle of the
vehicle. It was observed that sequential waypoints with a
dramatic change in depth would prompt the PID controller
to completely flip the AUV past the target pitch angle. To
remedy this, a conditional statement was added into the PID
controller to manually restrict the AUV’s pitch angle to a
certain maximum, chosen as 30 degrees from the horizontal.
With this change, the AUV model was able to transition much
more smoothly and continuously between waypoints.

C. Reaching Waypoints

The condition for reaching a waypoint for our system is
rather simple. We define a distance threshold, and continue
navigating towards the current waypoint until our position is
within the distance threshold. Initially, we chose a distance
threshold with a value of 0.25 meters. However, we found
that a low threshold like this would result in loopy and almost
figure-8-type artifacts when the AUV was close to the goal
waypoint (see Figure 11). This behavior is expected, as, since
the AUV is rather large, it can be tough to make very accurate
navigation. From this, we decided to increase our threshold to
3 meters. For the scale of our system, a threshold of 3 meters is
still rather small, and this helps reduce the loopy artifacts seen
in our navigation, see Figure 12. The speed to reach all the
waypoints is also significantly reduced by a more generous
distance threshold. It only takes 292 seconds for the AUV
to navigate to all the waypoints with a threshold of 3 meter
while it takes 1250 seconds to reach all the waypoints with a
threshold of 0.25 meters.

Fig. 11. Trajectory for Waypoint Navigation with Threshold = 0.25m

Fig. 12. Trajectory for Waypoint Navigation with Threshold = 3.0m

D. Performance With Ocean Current

So far, all of our work has been with no current or any
other disturbances. Here, we briefly show how our controller
performs for constant ocean currents. Figure 13 shows how our
trajectory differes with and without currents. In this case, we
apply a current of [0.6 0.3 0], which means there is a constant
push of 0.6 meters/second on the X, 0.3 meters/second on the
Y, and 0.0 meters/second on the Z of the AUV. Based on this
example, we can see that our controller still performs well
and reaches all the waypoints. One cool behavior we noticed
is that, if the AUV is struggling to reach a waypoint with
the current, it will align itself in the opposite direction of the
current and then move forwards until it hits the waypoint.

Fig. 13. Trajectories with and without Ocean Currents

VIII. REAL-TIME SIMULATION OF AUV IN 3D

The PID control loop provides the 12 outputs defined in [2],
being the three displacements and three rotations in the moving
frame of the vehicle and the world’s fixed frame. These outputs
were used to develop a three-dimensional simulation of the
AUV traversing between waypoints based on the order in
which they were indexed.

A simple model of the AUV was designed in Solidworks
and converted into a set of three-dimensional coordinates
through Matlab’s importGeometry function. These data points
composed a simple three-dimensional shell resembling the
AUV’s geometry.

For convenience, the volumetric centroid of the AUV model
was selected to be the origin of the moving frame. The vertex
data points were oriented around the model’s centroid by
subtracting the average X, Y, and Z values from the respective

Fig. 14. Geometric Vertex Coordinates relative to the Fixed/Moving Frames

dimension for each vertex. Equation 17 illustrates the process
for computing the augmented vertex coordinates for the i-th
element in a set of n-total vertices:

∀ i, 1 ≤ i ≤ n, ∃ Vi =

xiyi
zi

−

mean(x1, x2, ..., xn)mean(y1, y2, ..., yn)
mean(z1, z2, ..., zn)

 (17)

By defining the vertex data points with respect to the
model’s centroid, any given rotations would revolve the AUV
model about it’s own centroid, now the origin of the moving
frame. Animating the rotations of the vehicle model required
each vertex to be multiplied by the three rotation matrices
defined in Equations 18, 19, and 20. However, roll was
neglected in the model, so the rotation matrix Ax reduces to
the identity in Equation 18 below:

Ax(ϕ(t)) = Ax(0) =

1 0 0
0 cos(0) −sin(0)
0 sin(0) cos(0)

 = I (18)

Ay(θ(t)) =

 cos(θ(t)) 0 sin(θ(t))
0 1 0

−sin(θ(t)) 0 cos(θ(t))

 (19)

Az(ψ(t)) =

cos(ψ(t)) −sin(ψ(t)) 0
sin(ψ(t)) cos(ψ(t)) 0

0 0 1

 (20)

xiyi
zi

F

= Az(ψ(t))Ay(θ(t))I

xiyi
zi

M

+

dx(t)dy(t)
dz(t)

 (21)

The pitch (θ) and yaw (ψ) angles, used to compute the
rotation matrices Ay and Az , are time-dependent, same as
the terms dx, dy , and dz , representing the position of the
AUV centroid in the fixed frame. All five terms exist as
predetermined inputs, computed and indexed over a time

interval by separate ode45 functions. The outputs xi, yi, and
zi, with subscript F , represent the augmented coordinates of
the i-th numbered vertex in the AUV’s skeleton, with respect to
the fixed frame. Being time-dependent, the outputs of Equation
21 enable the visual movement and rotations of the AUV
model in the simulated environment. The alphaShape function
was used to create the visual representation of the geometric
data points in the simulation.

IX. MARSUPIAL PLANNING

With waypoint navigation and a simple simulation imple-
mented, we explored the idea of controlling multiple AUVs.
The idea here is that there is a larger carrier AUV which
can deploy mini vehicle AUVs to explore areas. We drew
inspiration from [5] which performs marsupial planning in
contested environments. We also based our work off of [6]
which explores carrier-vehicle systems with TSP and [7] which
provides an implementation for multiple TSP. In this report,
we refer to the larger carrier/mother AUV as the carrier AUV,
and the smaller explorer/daughter AUVs as vehicle AUVs.

A. Assumptions

There are a few assumptions we made in implementing our
marsupial system.

1) The carrier AUV and vehicle AUVs all share the same
dynamics as described so far in this paper.

2) The carrier AUV can deploy and recall the vehicle AUVs
instantly.

3) Current is non existent for multi-AUV planning.

B. Multi-Traveling Salesman Problem

The key challenge in implementing multi-AUV planning
was determining which waypoints each vehicle AUV should
navigate to in order to efficiently search the space. We explored
Dijkstra’s Algorithm and many implementations of the Multi-
ple Travelling Salesman Problem (MTSP). We decided to use a
variant of MTSP from [7]. This MTSP uses a genetic algorithm
with a multi-chromosome representation to find near-optimal
paths for minimum salesman subject to constraints (minimum
distance, cities per salesman, etc.). Figure 15 is an example
of what the example paths look like after running MTSP on
20 waypoints for four salesman (AUVs). We use these paths
with our AUV dynamics to navigate to the waypoints.

Fig. 15. Planned paths for 4 AUVs to reach 20 waypoints

C. Problem Setup
Here is a brief description of how we demonstrate our multi-

AUV planning. The main carrier AUV follows the waypoints
as described in section VII (see figure 16). At each one of
these green waypoints, the carrier AUV does a rough scan of
its environment, and detects potential areas of interest (cyan
points in figure 17). The carrier AUV then deploys these mini
vehicle AUVs to explore the areas of interest (cyan points).
When the vehicle AUVs reach these areas of interest (cyan
points) they are able to do a more in-depth scan and detect
points of interest (red points). These red points then need to
be searched by the vehicle AUVs in a future pass. In total,
there is one carrier AUV with four vehicle AUVs.

Fig. 16. Path of the large carrier AUV

Fig. 17. Areas/Points of Interest Relative to the Carrier AUV Vehicle
Deployment Point (Green Waypoint)

D. Results
Here we will go over how well our multi-AUV planning

works in simulation. Figure 18 shows the vehicle trajectories
for traversing the points of interest. We can see that the
trajectories are well spaced out and they result in all the vehicle
AUVs returning back to the carrier AUV within a similar
timeframe.

Note: For better simulation results, refer to the demo videos
found in the Video Demos section.

X. PATH PLANNING

We also explored the application of exploring sunken un-
derwater ships. With this, we determined that implementing
an object avoidance pathing algorithm was essential to the
success of our AUV to move throughout the sunken ship.

Fig. 18. Temp

A. Assumptions

For this section, we assumed that we had perfect knowledge
of the map our AUV was traversing through. This keeps
our problem focused solely working on the path-planning
aspect of moving through a sunken shipwreck versus a vision
challenge of mapping our surroundings. This is something we
can explore in the future for our research.

B. Occupancy Map

To create a map for our AUV to traverse through, we
use a 3D occupancy map to model the area in which our
model will be moving through. An occupancy map handles
all the (X,Y, Z) coordinates and their occupancy status. For
an occupancy map, a cell can be either unoccupied, unknown,
or a free space. For our model, we are only holding onto the
values of whether the space is unoccupied or free since we
are not mapping our space but rather using a predetermined
map.

For our map, we used the Matlab function occupan-
cyMap3D() to create our occupancy map. We then set a
specific resolution for our map to change how much size each
cell would occupy. We determined a cell size of 3.33 meters
per cell was the most efficient sizing of cells for our use case
giving us a resolution of 0.3. We then initialize a map size
of 150 meters ∗ resolution = 45 cells to leave us with a
90x90x90 grid of free space with each cell being 3.33 meters.
We can then add obstacles by setting a group of cells to be
occupied in the occupancy map.

After having the occupancy grid finished with all the
obstacles inserted, we can then inflate each obstacle to the
radius of our AUV. This is done to make sure that our AUV
does not path too close to the obstacles included in the map.
We also give our map a safety radius of 3 meters to give some
leeway for our AUV to path around obstacles.

Using this occupancy map, we can pass that to our A* path
planning algorithm along with a list of desired waypoints to
reach. When passing the waypoints into our A* algorithm, we
only pass two waypoints at a time since A* only considers
a start node and a goal pose. We use a loop to pass each

Fig. 19. Example Occupancy Map and Desired Waypoints

waypoint in and just combine all the paths found by the A*
algorithm to get one full path that reaches each waypoint.

C. A* Path Planning

The A* pathing algorithm handles the majority of the work
when pathing to each waypoint. It takes in a start node and
a goal node and uses two heuristics to calculate the ”costs”
of each cell as it searches for a valid path towards the goal.
We focus on three costs, the g cost, h cost, and f cost. The g
cost is the distance traveled from the start node to the desired
node. The h cost is the distance from the desired node to the
goal node. The f cost is the sum of these two costs.

The A* algorithm uses an open list and a closed list which
are dictionaries to hold a list of cells. The open list contains
cells that have been found, but not searched yet, and the closed
list contains a list of cells that have been investigated. When
starting the algorithm, we start with the closed list empty and
the open list with the start node. To find each list, we iterate
through the open list and pop the node in the list with the
lowest f cost. With this node we check if it has the same
coordinates as the goal node, and will end the search if it is.
If not, The algorithm then expands from that current node to
the adjacent surrounding nodes if they occupy a free space in
the occupancy map. As we look at each other expanded node,
we record their coordinates, parent node, g cost, h cost, and
f cost. If a child node is in either the open list we update the
values in the lists. This signifies we have found a better path
utilizing the node than previously. If the node is not in either
list, we then add it to the open list.

By going through this loop, our A* algorithm expands from
the start node until it either reaches the goal node or checks
every node until the open list is empty. If the open list becomes
empty, that means no path exists between the start node and
the goal node. If a goal node is found, we exit the loop and
extract a path using the parents of each node. We start at the
goal node and keep track of each coordinate reached until we
arrive at the start node. This gives us a list of coordinates the
A* algorithm took to find the goal node from the start node.
After this, we prune the path by comparing the direction each
step of the path takes. If they are the same, we remove in-
between nodes that are included in our path array. This gives

us a path that only has the key coordinates where we are
changing our heading. We then return this whole path to our
AUV controller to follow each point in the entire path.

Fig. 20. Example Path Planning with Obstacle Avoidance

D. Findings

From our A* path planning, we noticed that it would cause
our AUV model to move slowly in some areas where it had
to turn a lot. This may be due to the fact that if there are
small changes in the points in the path the AUV PID controller
struggles to move efficiently through these small changes. This
may be fixed by tuning the integral term for the velocity
controller or changing the threshold of how close the AUV
has to be to a point to considered it reached.

XI. VIDEO DEMOS

For a real time simulation of our simple waypoint navigation
see the video here. A demo of our multi-AUV planning can
be found here. A demo of our A* path planning can be found
here.

XII. CONCLUSION

We linearized the equations for our control and implemented
PID controllers to control our AUV. We demonstrated that we
can use our controllers to navigate basic waypoints with and
without constant current. We also explored more complicated
planning including marsupial planning and obstacle avoidance
and showed how our AUV performs. There are many adapta-
tions of the current model which may be explored in future
work. As stated previously, the roll angle of the vehicle was
neglected to mimic the conditions of the model developed in
[2]. It would be desirable to explore the effects of roll on the
response of the PID controller if it were included in the vehicle
response. In addition, the AUV model could be given more
autonomous capabilities to enable a firmer decision making
process beyond the naviagtion of waypoints in a predetermined
order.

https://www.youtube.com/watch?v=fznMg9rK2Es&ab_channel=ChristianForeman
https://www.youtube.com/watch?v=d1sCa8smCt8&ab_channel=ChristianForeman
https://youtu.be/drfrZaXC5tQ?si=_zQHrHM_UDqMGGUK

REFERENCES

[1] Warner, David C. ”Design, Simulation and Experimental Verification of
a Computer Model and Enhanced Position Estimator for the NPS AUV
II,” in Naval Postgraduate School, 1991.

[2] A. J. Healey and D. Lienard, ”Multivariable Sliding-Mode Control for
Autonomous Driving and Steering of Unmanned Underwater Vehicles,”
IEEE J. Oceanic Eng., vol. 18, NO. 3, 1993.

[3] D. Lienard, ”Autopilot Design for Autonomous Underwater Vehicles
Based on Sliding Mode Control,” in Naval Postgraduate School, 1990.

[4] Van den Bremer, T. S., and Breivik, ”Stokes Drift,” in Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol 376, issue 2111, 2018.

[5] R. Tian, H. Chen, G. Frey, B. Zu, A. Girard and I. Kolmanovsky,
”Path planning for information collection in contested environments
using marsupial systems,” 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), Miami, FL, USA, 2017, pp. 706-715, doi:
10.1109/ICUAS.2017.7991386.

[6] Garone, Emanuele & Naldi, Roberto & Casavola, Alessandro. (2011).
A Traveling Salesman Problem for a Class of Carrier-Vehicle Systems.
Journal of Guidance, Control, and Dynamics.

[7] András Király, János Abonyi, Redesign of the supply of mobile me-
chanics based on a novel genetic optimization algorithm using Google
Maps API, Engineering Applications of Artificial Intelligence, Volume
38, 2015, Pages 122-130. Matlab Code: here.

https://www.mathworks.com/matlabcentral/fileexchange/48133-multiple-traveling-salesmen-problem-genetic-algorithm-using-multi-chromosome-representation?status=SUCCESS

APPENDIX

Fig. 21. Sketch of the NPS II Vehicle

Variable Description
x,y,z Distance along the principle axes
u,v,w Velocity Components of body axis system relative to

fluid along body axes
p,q,r Angular velocity components of body relative to

inertial reference system along body axes
X,Y, Z Hydrodynamic force components along body axes
K,M,N Hydrodynamic moment components along body axes
Ψ, θ, ϕ Yaw, pitch, and roll angles (Euler angles)

m Mass of AUV
W Weight of AUV
v Displacement volume of the AUV
B Buoyancy force acting on the AUV

xG, yG, zG Coordinates of the Center of Gravity in the body axis
system. These depend on the mass distribution of the
vehicle

xB , yB , zB Coordinates of the Center of Gravity in the body axis
system. These depend on the mass distribution of the
vehicle

Ix, Iy, Iz Moments of inertia about the body system axes
Ixy, Ixz, Iyz Products of inertia about the body system axes

ρ Mass density water
l Reference length used to nondimensionalize the hy-

drodynamic coefficients
b(x), h(x) Width and height of the AUV in the xy and xz planes,

respectively, measured in the body axis system.
xnose, xtail Coordinates of the vehicle nose and tail as measured

in body axis system
Ucf (x) Total crossflow velocity on AUV at position x
δrb, δrs Bow and Stern rudder deflection angles in radians
CDy, CDz Drag coefficients along the y and z axes of the body

system axes

	Introduction
	Background
	Reference Frames
	Assumptions
	Variables and Parameters

	Equations of Motion
	Linearization
	Speed
	Vertical Motion
	Lateral Motion

	Stability
	Speed
	Vertical Motion
	Lateral Motion

	PID Control
	Controllability
	Designing the PID Controllers
	Tuning
	Final Controllers

	Waypoint Navigation
	Control Logic
	Selecting Waypoints
	Reaching Waypoints
	Performance With Ocean Current

	Real-time Simulation of AUV in 3D
	Marsupial Planning
	Assumptions
	Multi-Traveling Salesman Problem
	Problem Setup
	Results

	Path Planning
	Assumptions
	Occupancy Map
	A* Path Planning
	Findings

	Video Demos
	Conclusion
	References
	Appendix

